
djangocms-moderation Documentation

Fidelity International

May 16, 2024

USER DOCUMENTATION:

1 Overview 1

2 Moderation Collection 3
2.1 Buttons . 3
2.2 Actions . 4
2.3 States . 4
2.4 Bulk Actions . 5

3 Comment 7

4 Moderation Review Lock 9

5 Moderation Request 11
5.1 States . 11

6 Moderation Request Action 13

7 Notifications 15
7.1 Email notifications . 15

8 Role 17
8.1 Reviewer . 18
8.2 Collection author . 18

9 References 19

10 Workflow 21

11 Workflow Step 23

12 Introduction 25
12.1 Integrating Moderation . 25

13 Internals 27
13.1 Admin Moderation . 27
13.2 Tree Admin . 27

14 Management Commands 29
14.1 moderation_fix_states . 29

15 Signals 31
15.1 submitted_for_review . 31

i

15.2 published . 32
15.3 unpublished . 32
15.4 How to use the moderation publish signal for a collection . 33

16 Glossary 35

17 Indices and tables 37

Python Module Index 39

Index 41

ii

CHAPTER

ONE

OVERVIEW

Moderation provides an approval workflow mechanism for organisations who need to ensure that content is approved
before it is published. It is designed to extend and compliment the Versioning addon and has that as a dependency.

The general idea is that a draft version can be submitted for moderation. This involves adding that draft to a Moderation
Collection, which can be thought of as a chapter, edition or batch of content that aims to all be published simultaneously.
Various drafts can be added to the same Moderation Collection.

Drafts within the Moderation Collection can then be approved rejected by various parties according to role`s defined
within the :ref:`workflow assigned to the Moderation Collection.

Once one or more items within the Moderation Collection have been approved, the Moderation Collection owner is
able to select those items and publish them.

Comments can also be added to any of these entities Moderation Collection, Moderation Request, Moderation Request
Action.

The Moderation addon makes use of the App Registry features provided as part of DjangoCMS 4.0 in order to register
models for various content-types to be moderated. Thus it is possible to configure your CMS project so that some
content-types are moderated whilst others are not. Any such model registered with Moderation must also be registered
with Versioning.

1

djangocms-moderation Documentation

2 Chapter 1. Overview

CHAPTER

TWO

MODERATION COLLECTION

A Moderation Collection is primarily intended as a way of being able to group draft content versions together for: a)
review and b) publishing

The rules for adding items to a Collection, removing items from a Collection and the actions that can be taken on items
the Collection may vary by Workflow.

Publishing is a djangocms-versioning feature, thus djangocms-moderation depends on and extends the functionality
made available by the Versioning addon.

Collections are stateful. The available states are:

• Collecting

• In review

• Archived

• Cancelled

Drafts can only be added to a Collection during the Collecting phase (see Moderation Review Lock)

2.1 Buttons

2.1.1 Add Collection

Those with permissions can create new collections. The author is auto-assigned as the current user. A Workflow must
be selected. A name must be given to the collection. If there are already items in the Collection, these will be shown
on the confirmation screen.

2.1.2 Edit Collection

The selected workflow can only be changed whilst the Collection is in collecting state.

3

djangocms-moderation Documentation

2.1.3 Add draft to Collection (“Submit for moderation”)

The CMSToolbar (for content-types with a preview end-point) will be modified to add the “Submit for moderation”
button for draft versions. Doing so allows one to select which Collection to add the draft to.

2.2 Actions

2.2.1 Submit for review

Moves the collection state from collecting to in review. Only available whilst collection phase is collecting. Sends out
notifications to the selected reviewers.

2.2.2 Cancel collection

Changes the collection state to cancelled.

2.2.3 Archive collection

Changes the collection state to archived. Only available if every Moderation Request in the Collection has been ap-
proved.

2.3 States

2.3.1 Collecting

Once a Collection is created it is in this initial state, which allows draft versions to be added to a Collection by its author
only.

2.3.2 In Review

A collection is submitted for review by the collection author. Reviewers (see Role) are then able to act on versions
in that Collection. Such actions are tracked as a Moderation Request Action. Drafts cannot be added to a Moderation
Collection while that collection is in review and drafts that are already in the Collection have limited editing permissions
(see Moderation Review Lock).

2.3.3 Archived

Once all items in a collection have either been removed or approved, the collection becomes archiveable. Archiving
a collection is a manual process. The effect of archiving a collection is that it to facilitate list filtering. Archived
collections cannot be modified in any way.

4 Chapter 2. Moderation Collection

djangocms-moderation Documentation

2.3.4 Cancelled

A collection can also be flagged as cancelled. This is similar to Archived except that it can be done at any stage.

2.4 Bulk Actions

These will appear in the Collection’s action drop-down for each content-type registered with Moderation.

2.4.1 Remove from collection

Removes a draft from the collection.

2.4.2 Approve

Flags a draft as being ready for publishing.

2.4.3 Submit for rework (reject)

Flags a draft as being in need of further editing

2.4.4 Submit for review

Useful for items that have been flagged for rework - resubmits them for review, sending out notifications again.

2.4. Bulk Actions 5

djangocms-moderation Documentation

6 Chapter 2. Moderation Collection

CHAPTER

THREE

COMMENT

Comments may be added to various moderation entities:

• Moderation Collection

• Moderation Request

• Moderation Request Action

7

djangocms-moderation Documentation

8 Chapter 3. Comment

CHAPTER

FOUR

MODERATION REVIEW LOCK

As soon as a Moderation Collection status becomes in review then its drafts are automatically locked, in the
sense that their content can no longer be edited (not at all, not by anyone, not even the collection author). Also
once a collection is in Review then content versions cannot be added to the collection. This means that once
you’ve clicked “Submit for review”:

• Collection Lock: New drafts cannot be added to the Moderation Collection

• Version Lock: Drafts in the Moderation Collection cannot be edited unless rejected

Once a version is published the Moderation Version Lock is removed automatically.

9

djangocms-moderation Documentation

10 Chapter 4. Moderation Review Lock

CHAPTER

FIVE

MODERATION REQUEST

While the aim of a Moderation Collection is to group draft Version objects together. This is achieved via an intermediary
model Moderation Request which allows meta-data such as approvals, comments, dates and actors to be associated with
each draft as it goes through moderation.

Conceptually this entity can be thought of as a “request to publish” for a particular draft version. Thus the request
tracks the meta-data associated with the moderation process for a particular draft.

Moderation Requests should not be confused with the standard Django request entity.

5.1 States

Moderation Requests do not track state directly, however they contain one or more instances of the Moderation Request
Action entity, which is stateful and the Moderation Request state can thus be inferred from its moderation request
actions. These latter also link to a draft version, which also has states. The inferred states for a request are:

5.1.1 Ready for review

Waiting for approval / rejection. I.e. (@TODO: ???)

5.1.2 Ready for rework

Waiting for editing and resubmission for review. I.e. contains one or more actions of the rejected state.

5.1.3 Approved

Ready to be published. I.e. contains only actions of the ‘approved’ state.

5.1.4 Published

I.e. refers to a Published version - no longer a draft.

11

djangocms-moderation Documentation

12 Chapter 5. Moderation Request

CHAPTER

SIX

MODERATION REQUEST ACTION

Each Workflow Step must be assigned to a Role. This allows the moderation system to know the set of valid Reviewers
for that step. Once that Reviewer acts on a given Moderation Request, their action is recorded as a Moderation Request
Action.

13

djangocms-moderation Documentation

14 Chapter 6. Moderation Request Action

CHAPTER

SEVEN

NOTIFICATIONS

7.1 Email notifications

Configure email notifications to fail silently by setting: EMAIL_NOTIFICATIONS_FAIL_SILENTLY=True

15

djangocms-moderation Documentation

16 Chapter 7. Notifications

CHAPTER

EIGHT

ROLE

Understanding the Role model can be a bit tricky because it blurs the lines between the CMS permissions system and
the custom permission system implemented by Moderation. So let’s break this down a bit. . .

Firstly from a CMS permissions perspective - you can define whatever Groups you like to the various standard and
customer model permissions for Moderation (e.g. add_moderationcollection). However, the recommendation is the
following groups: Editor, Publisher and Reviewer. The Reviewer should have permission to view the Moderation
Collection only (and should generally have very limited access to the CMS - no edit / create permissions for content-
types in general. The Editor should have rights to view and edit a Moderation Collection. The Publisher should have
rights to create, edit, cancel and view a Moderation Collection.

For the purpose of this explanation - Role (capitalised) and role (lowercase) - Role refers to the model, whereas role
refers to the word “role” in the normal broad application of the English term.

Moderation has internal permissions logic which does not involve CMS permissions but rather which defines two
roles, each which will have differing access to parts of the Moderation UI/UX. These roles are Collection author and
Reviewer.

Collection author is defined simply by the author fk link to a user on the ModerationCollection model instance. It is
always a single User. For this user, the following bulk actions will be enabled in the Moderation’s change_list view ,
namely cancel collection, publish and remove.

Reviewer is a more nebulous concept. A ModerationCollection may have a number of Reviewers. The Workflow has
one or more Workflow Step each which have a single Role assigned to it. The Role links to either a single User or a
Group of Users. This dynamically determines a set of users that are valid Reviewers for a given Moderation Request
at a given Workflow Step. Once a valid Reviewer acts on a given Moderation Request, their action is recorded as a
Moderation Request Action. A Reviewer has access to a compliment of bulk actions - specifically allowing a Reviewer
to accept or reject a draft version.

A User may be both a Reviewer and a Collection author for a given Moderation Collection.

Thus, the Role model defines the person/s who is responsible for reviewing a particular step of the workflow. I.e. it
defines the users that may review a draft version for a given Moderation Request for a given Collection.

In summary. . .

17

djangocms-moderation Documentation

8.1 Reviewer

The Reviewer is responsible for approving / rejecting items in the collection and making comments. They have access
to the Approve and Submit for rework Moderation Collection bulk actions.

8.2 Collection author

The collection author is responsible for creating, editing and (usually) publishing the collection. They have access to
the Submit for review and Publish Moderation Collection bulk actions, as well as the various Moderation Collection
buttons.

18 Chapter 8. Role

CHAPTER

NINE

REFERENCES

Moderation offers integration with the djangocms-references addon (djangocms-references). If this is enabled then on
the confirmation screen when publishing, all content records that will be affected by the publish action will be listed
for review before confirmation.

19

https://github.com/fidelityinternational/djangocms-references

djangocms-moderation Documentation

20 Chapter 9. References

CHAPTER

TEN

WORKFLOW

The moderation workflow system is designed to be flexible enough that it can cater for a multi-step approval workflow.
E.g. if your organisation has marketing, legal and compliance departments who each need to approve every request,
you would add 3 steps to your workflow, each assigned to a different Role. The workflow would require each step to be
approved before the Moderation Request could be published.

Workflows are designed to be extensible and customisable for developers.

21

djangocms-moderation Documentation

22 Chapter 10. Workflow

CHAPTER

ELEVEN

WORKFLOW STEP

Each Workflow has at least one workflowstep. These are steps of review the moderation process needs to go through.
For example, if an organisation had several different departments, each needing to approve each Moderation Request,
then:

1. Each of those departments would be set up as a user Group

2. A workflow would be created to represent this

3. A step would be added for each department and the Group for that department would be assigned as the Role for
that workflow step.

As a result, the draft could not be published without first being approved at each step in the Workflow

23

djangocms-moderation Documentation

24 Chapter 11. Workflow Step

CHAPTER

TWELVE

INTRODUCTION

12.1 Integrating Moderation

Moderation depends on Versioning to be installed. The content-type models that should be moderated need to be
registered. This can be done in cms_config.py file:

blog/cms_config.py
from collections import OrderedDict
from cms.app_base import CMSAppConfig
from djangocms_versioning.datastructures import VersionableItem, default_copy
from .models import PostContent

def get_preview_url(obj):
generate url as required
return obj.get_absolute_url()

def get_blog_additional_changelist_action(obj):
return "Custom moderation action"

def get_blog_additional_changelist_field(obj):
return "Custom moderation field"

get_poll_additional_changelist_field.short_description = "Custom Field"

class BlogCMSConfig(CMSAppConfig):
djangocms_versioning_enabled = True # -- 1
djangocms_moderation_enabled = True # -- 2
versioning = [

VersionableItem(# -- 3
content_model=PostContent,
grouper_field_name='post',
copy_function=default_copy,
preview_url=get_preview_url,

),
]
moderated_models = [# -- 4
PostContent,

]
moderation_request_changelist_actions = [# -- 5

get_blog_additional_changelist_action
]
moderation_request_changelist_fields = [# -- 6

(continues on next page)

25

https://github.com/divio/djangocms-versioning

djangocms-moderation Documentation

(continued from previous page)

get_blog_additional_changelist_field
]

1. This must be set to True for Versioning to read app’s CMS config.

2. This must be set to True for Moderation to read app’s CMS config.

3. versioning attribute takes a list of VersionableItem objects. See djangocms_versioning documentation for details.

4. moderated_models attribute takes a list of moderatable model objects.

5. moderation_request_changelist_actions attribute takes a list of actions that are added to the action field in the
Moderation Request Changelist admin view

6. moderation_request_changelist_fields attribute takes a list of admin fields that are added to the display list in the
Moderation Request Changelist admin view

26 Chapter 12. Introduction

CHAPTER

THIRTEEN

INTERNALS

13.1 Admin Moderation

13.1.1 monkeypatch.py

Moderation monkeypatches some of Versioning’s admin pages. get_state_actions:- this adds a “Submit for moderation”
link next to draft versions in the Version table for a given content-type.

It also adds some checks to the checks-framework checks registered in Versioning, to prevent certain Versioning func-
tions at certain stages of moderation.

13.1.2 admin.py

Aside from the usual, there are a number of bulk-action confirmation views that are generated here:- delete_selected,
approve, rework, publish, resubmit. These each provide additional information whilst facilitating confirmation and the
admin_actions.py redirect to these views.

The available bulk actions are also controlled by the internal permissions system within Moderation which links Users or
Groups to Roles. Each Moderation Request Action within a Workflow has a single Role assigned to it. Each Moderation
Collection has a Workflow. The result is that not all bulk-actions will be available to every user and some will appear
only when the Moderation Request is in a particular inferred state.

13.1.3 cms_toolbars.py

Replaces the VersioningToolbar object with the ModerationToolbar object in order to show Versioning-related buttons
at the correct part of the Workflow.

13.2 Tree Admin

13.2.1 Add Children To Collection

The CollectionItemsView class from views.py provides a way, when adding a Page to a Moderation Collection of also
adding any drafts from other content-types that are included as plugins in any placeholders on that Page.

This poses certain UI / UX challenges. The default implementation meant that these drafts would simply be added to
the Collection as part of the list of content objects in that collection. However there are several problems with this:

1. There’s no obvious link between the listed items and the pages that contain them and they would thus be indis-
tinguishable from content objects that may have been added without being part of any page.

27

djangocms-moderation Documentation

2. Reviewers aren’t necessarily interested in all of that detail. They would want to simply be able to moderate the
page, including all of it’s content. So all of the detail may be undigestible for them.

The solution for these problems that has been implemented is to rework the admin as a TreeBeard admin view. This
creates a tree for each collection which would map the relationships between items that are added as part of a page and
that page.

The outcome of this is that a given content object may be appear repeatedly within the tree, even though it is only added
to the Collection once. e.g. If a child that is added to a Moderation Collection as part of both parent1 and parent2 and
individually via that child content-type’s admin, it would then appear three times within the tree. Removing the child
from the Moderation Collection would remove it from all/any parts of the tree it was part of.

The tree structure is shown visually using tabbed spacing to indicate nesting.

The ModerationRequestTreeAdmin class in admin.py replaces the original ModerationRequestAdmin, providing Tree-
Beard integration as described above.

The delete_selected_view function of that class ensures that removing an item from the Moderation Collection updates
the tree correctly via means of a recursive function, _traverse_moderation_nodes.

28 Chapter 13. Internals

CHAPTER

FOURTEEN

MANAGEMENT COMMANDS

The commands made available to developers should be used with caution, be sure that you know what you are doing.

14.1 moderation_fix_states

This command is to be used only when a version becomes un-editable due to inconsistencies with states that are con-
trolled by moderation. It has been observed that the state can end up inconsistent in very rare scenarios. A Modera-
tionRequest object should never have is_active=True when the item has been successfully published. The following
states can cause a version to be locked from editing:

• ModerationRequest.is_active=True

• ModerationRequest.version.state=published

• ModerationRequest.collection.state=Archived

In this scenario a new Draft object cannot be created from the Published object due to version checks.

The command will first analyse and list any ModerationRequest objects that are in a broken / inconsistent state.

The fix will correctly set the is_active flag leaving the correct states:

• ModerationRequest.is_active=False

• ModerationRequest.version.state=published

• ModerationRequest.collection.state=Archived

14.1.1 Usage

To first run an analysis on whether any ModerationRequest objects have a broken / inconsistent state.

python manage.py moderation_fix_states

To execute and resolve any state inconsistencies, you can run the command with the –perform-fix flag set.

python manage.py moderation_fix_states --perform-fix

29

djangocms-moderation Documentation

30 Chapter 14. Management Commands

CHAPTER

FIFTEEN

SIGNALS

The djangocms_moderation.signals module defines a set of signals sent by Django CMS Moderation.

15.1 submitted_for_review

djangocms_moderation.submitted_for_review

Sent when a Moderation Collection is submitted for review, or when select Moderation Requests are resubmitted after
being rejected.

Arguments sent with this signal:

sender
djangocms_moderation.models.ModerationCollection class

collection
A djangocms_moderation.models.ModerationCollection instance which was submitted for review

moderation_requests
A list of djangocms_moderation.models.ModerationRequest instances which were submitted for review

Note: It’s possible for this list to contain only some of the requests belonging to the collection being moderated,
because only some of the requests required rework.

This case is only possible for resubmitting after a rework.

user
A django.contrib.auth.models.User instance which triggered the submission

rework
A bool value specifying if this was the first time the collection was submitted, or a rework of its moderation
requests

31

djangocms-moderation Documentation

15.2 published

djangocms_moderation.published

Sent when a Moderation Collection is being published

Arguments sent with this signal:

sender
djangocms_moderation.models.ModerationCollection class

collection
A djangocms_moderation.models.ModerationCollection instance which was submitted to be published.

moderator
A django.contrib.auth.models.User associated with the collection which is the moderator of the collec-
tion.

moderation_requests
A list of djangocms_moderation.models.ModerationRequest instances which were published.

Note: It’s possible for this list to contain only some of the requests belonging to the collection being moderated,
because only some of the requests were published.

workflow
An instance of djangocms_moderation.models.Workflow which was used for this collection.

15.3 unpublished

djangocms_moderation.unpublished

Sent when a Moderation Collection is being unpublished

Arguments sent with this signal:

sender
djangocms_moderation.models.ModerationCollection class

collection
A djangocms_moderation.models.ModerationCollection instance which was submitted to be unpub-
lished.

moderator
A django.contrib.auth.models.User associated with the collection which is the moderator of the collec-
tion.

moderation_requests
A list of djangocms_moderation.models.ModerationRequest instances which were unpublished.

Note: It’s possible for this list to contain only some of the requests belonging to the collection being moderated,
because only some of the requests were unpublished.

workflow
An instance of djangocms_moderation.models.Workflow which was used for this collection.

32 Chapter 15. Signals

djangocms-moderation Documentation

15.4 How to use the moderation publish signal for a collection

The CMS used to provide page publish and unpublish signals which have since been removed in DjangoCMS 4.0. You
can instead use the signals provided above to replace these.

Djangocms-moderation provides a way to take further actions once a collection has been published. The published
event is the last event executed for a moderation.

from django.dispatch import receiver

from cms.models import PageContent

from djangocm_moderation.signals import published

@receiver(published)
def do_something_on_publish_event(*args, **kwargs):

all keyword arguments can be found in kwargs
pass

15.4. How to use the moderation publish signal for a collection 33

djangocms-moderation Documentation

34 Chapter 15. Signals

CHAPTER

SIXTEEN

GLOSSARY

Moderation
A process by which a draft version (see docs for djangocms-versioning) goes through an approval process before
it can be published.

Moderation Collection
A collection (or batch) of drafts ready for moderation.

Moderation Request
Each draft in a Moderation Collection is wrapped as a Moderation Request in order to associate additional
Workflow -related data with that draft. Each request may also have comments added to it and may send out
notifications

Workflow
Each Moderation Collection is associated with a Workflow. The workflow determines through what steps the
moderation process needs to go and may provide a differing moderation UX for each Workflow.

WorkflowStep
Each Workflow has at least one Workflow Step.

Moderation Request Action
Each Moderation Request will have a number of actions associated with it. The number of these is defined as
part of the Workflow. A Moderation Request Action is the action taken by an actor who is part of the moderation
process. E.g. “mark as approved”, “request rework”, “publish”.

Role
Each Moderation Request Action step in a Workflow is associated with a Role. The Role consists either of a single
User or a single Group. The users associated with that Role are required to act at that stage of the Workflow.

35

https://github.com/divio/djangocms-versioning

djangocms-moderation Documentation

36 Chapter 16. Glossary

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

• search

37

djangocms-moderation Documentation

38 Chapter 17. Indices and tables

PYTHON MODULE INDEX

d
djangocms_moderation.signals, 31

39

djangocms-moderation Documentation

40 Python Module Index

INDEX

D
djangocms_moderation.signals

module, 31

M
Moderation, 35
Moderation Collection, 35
Moderation Request, 35
Moderation Request Action, 35
module

djangocms_moderation.signals, 31

P
published (djangocms_moderation attribute), 32

R
Role, 35

S
submitted_for_review (djangocms_moderation

attribute), 31

U
unpublished (djangocms_moderation attribute), 32

W
Workflow, 35
WorkflowStep, 35

41

	Overview
	Moderation Collection
	Buttons
	Add Collection
	Edit Collection
	Add draft to Collection (“Submit for moderation”)

	Actions
	Submit for review
	Cancel collection
	Archive collection

	States
	Collecting
	In Review
	Archived
	Cancelled

	Bulk Actions
	Remove from collection
	Approve
	Submit for rework (reject)
	Submit for review

	Comment
	Moderation Review Lock
	Moderation Request
	States
	Ready for review
	Ready for rework
	Approved
	Published

	Moderation Request Action
	Notifications
	Email notifications

	Role
	Reviewer
	Collection author

	References
	Workflow
	Workflow Step
	Introduction
	Integrating Moderation

	Internals
	Admin Moderation
	monkeypatch.py
	admin.py
	cms_toolbars.py

	Tree Admin
	Add Children To Collection

	Management Commands
	moderation_fix_states
	Usage

	Signals
	submitted_for_review
	published
	unpublished
	How to use the moderation publish signal for a collection

	Glossary
	Indices and tables
	Python Module Index
	Index

