

Welcome to djangocms-moderation’s documentation!

User Documentation:

	Overview

	Moderation Collection
	Buttons

	Actions

	States

	Bulk Actions

	Comment

	Moderation Review Lock

	Moderation Request
	States

	Moderation Request Action

	Notifications
	Email notifications

	Role
	Reviewer

	Collection author

	References

	Workflow

	Workflow Step

Developer Documentation:

	Introduction
	Integrating Moderation

	Internals
	Admin Moderation

	Tree Admin

	References

	Management Commands
	moderation_fix_states

	Signals
	submitted_for_review

	published

	unpublished

	How to use the moderation publish signal for a collection

Glossary

	Moderation
	A process by which a draft version (see docs for djangocms-versioning [https://github.com/divio/djangocms-versioning]) goes through an approval process before it can be published.

	Moderation Collection
	A collection (or batch) of drafts ready for moderation.

	Moderation Request
	Each draft in a Moderation Collection is wrapped as a Moderation Request in order to associate additional Workflow -related data with that draft. Each request may also have comments added to it and may send out notifications

	Workflow
	Each Moderation Collection is associated with a Workflow. The workflow determines through what steps the moderation process needs to go and may provide a differing moderation UX for each Workflow.

	WorkflowStep
	Each Workflow has at least one Workflow Step.

	Moderation Request Action
	Each Moderation Request will have a number of actions associated with it. The number of these is defined as part of the Workflow. A Moderation Request Action is the action taken by an actor who is part of the moderation process. E.g. “mark as approved”, “request rework”, “publish”.

	Role
	Each Moderation Request Action step in a Workflow is associated with a Role. The Role consists either of a single User or a single Group. The users associated with that Role are required to act at that stage of the Workflow.

Indices and tables

	Index

	Module Index

	Search Page

Overview

Moderation provides an approval workflow mechanism for organisations who need to ensure that content is approved before it is published. It is designed to extend and compliment the Versioning addon and has that as a dependency.

The general idea is that a draft version can be submitted for moderation. This involves adding that draft to a Moderation Collection, which can be thought of as a chapter, edition or batch of content that aims to all be published simultaneously. Various drafts can be added to the same Moderation Collection.

Drafts within the Moderation Collection can then be approved rejected by various parties according to role`s defined within the :ref:`workflow assigned to the Moderation Collection.

Once one or more items within the Moderation Collection have been approved, the Moderation Collection owner is able to select those items and publish them.

Comments can also be added to any of these entities Moderation Collection, Moderation Request, Moderation Request Action.

The Moderation addon makes use of the App Registry features provided as part of DjangoCMS 4.0 in order to register models for various content-types to be moderated. Thus it is possible to configure your CMS project so that some content-types are moderated whilst others are not. Any such model registered with Moderation must also be registered with Versioning.

Moderation Collection

A Moderation Collection is primarily intended as a way of being able to group draft content versions together for:
a) review and
b) publishing

The rules for adding items to a Collection, removing items from a Collection and the actions that can be taken on items the Collection may vary by Workflow.

Publishing is a djangocms-versioning feature, thus djangocms-moderation depends on and extends the functionality made available by the Versioning addon.

	Collections are stateful. The available states are:
	
	Collecting

	In review

	Archived

	Cancelled

Drafts can only be added to a Collection during the Collecting phase (see Moderation Review Lock)

Buttons

Add Collection

Those with permissions can create new collections. The author is auto-assigned as the current user. A Workflow must be selected. A name must be given to the collection. If there are already items in the Collection, these will be shown on the confirmation screen.

Edit Collection

The selected workflow can only be changed whilst the Collection is in collecting state.

Add draft to Collection (“Submit for moderation”)

The CMSToolbar (for content-types with a preview end-point) will be modified to add the “Submit for moderation” button for draft versions. Doing so allows one to select which Collection to add the draft to.

Actions

Submit for review

Moves the collection state from collecting to in review. Only available whilst collection phase is collecting. Sends out notifications to the selected reviewers.

Cancel collection

Changes the collection state to cancelled.

Archive collection

Changes the collection state to archived. Only available if every Moderation Request in the Collection has been approved.

States

Collecting

Once a Collection is created it is in this initial state, which allows draft versions to be added to a Collection by its author only.

In Review

A collection is submitted for review by the collection author. Reviewers (see Role) are then able to act on versions in that Collection. Such actions are tracked as a Moderation Request Action. Drafts cannot be added to a Moderation Collection while that collection is in review and drafts that are already in the Collection have limited editing permissions (see Moderation Review Lock).

Archived

Once all items in a collection have either been removed or approved, the collection becomes archiveable. Archiving a collection is a manual process. The effect of archiving a collection is that it to facilitate list filtering. Archived collections cannot be modified in any way.

Cancelled

A collection can also be flagged as cancelled. This is similar to Archived except that it can be done at any stage.

Bulk Actions

These will appear in the Collection’s action drop-down for each content-type registered with Moderation.

Remove from collection

Removes a draft from the collection.

Approve

Flags a draft as being ready for publishing.

Submit for rework (reject)

Flags a draft as being in need of further editing

Submit for review

Useful for items that have been flagged for rework - resubmits them for review, sending out notifications again.

Comment

	Comments may be added to various moderation entities:
	
	Moderation Collection

	Moderation Request

	Moderation Request Action

Moderation Review Lock

	As soon as a Moderation Collection status becomes in review then its drafts are automatically locked, in the sense that their content can no longer be edited (not at all, not by anyone, not even the collection author). Also once a collection is in Review then content versions cannot be added to the collection. This means that once you’ve clicked “Submit for review”:
	
	Collection Lock: New drafts cannot be added to the Moderation Collection

	Version Lock: Drafts in the Moderation Collection cannot be edited unless rejected

Once a version is published the Moderation Version Lock is removed automatically.

Moderation Request

While the aim of a Moderation Collection is to group draft Version objects together. This is achieved via an intermediary model Moderation Request which allows meta-data such as approvals, comments, dates and actors to be associated with each draft as it goes through moderation.

Conceptually this entity can be thought of as a “request to publish” for a particular draft version. Thus the request tracks the meta-data associated with the moderation process for a particular draft.

Moderation Requests should not be confused with the standard Django request entity.

States

Moderation Requests do not track state directly, however they contain one or more instances of the Moderation Request Action entity, which is stateful and the Moderation Request state can thus be inferred from its moderation request actions. These latter also link to a draft version, which also has states. The inferred states for a request are:

Ready for review

Waiting for approval / rejection. I.e. (@TODO: ???)

Ready for rework

Waiting for editing and resubmission for review. I.e. contains one or more actions of the rejected state.

Approved

Ready to be published. I.e. contains only actions of the ‘approved’ state.

Published

I.e. refers to a Published version - no longer a draft.

Moderation Request Action

Each Workflow Step must be assigned to a Role. This allows the moderation system to know the set of valid Reviewers for that step. Once that Reviewer acts on a given Moderation Request, their action is recorded as a Moderation Request Action.

Notifications

Email notifications

Configure email notifications to fail silently by setting: EMAIL_NOTIFICATIONS_FAIL_SILENTLY=True

Role

Understanding the Role model can be a bit tricky because it blurs the lines between the CMS permissions system and the custom permission system implemented by Moderation. So let’s break this down a bit…

Firstly from a CMS permissions perspective - you can define whatever Groups you like to the various standard and customer model permissions for Moderation (e.g. add_moderationcollection). However, the recommendation is the following groups: Editor, Publisher and Reviewer. The Reviewer should have permission to view the Moderation Collection only (and should generally have very limited access to the CMS - no edit / create permissions for content-types in general. The Editor should have rights to view and edit a Moderation Collection. The Publisher should have rights to create, edit, cancel and view a Moderation Collection.

For the purpose of this explanation - Role (capitalised) and role (lowercase) - Role refers to the model, whereas role refers to the word “role” in the normal broad application of the English term.

Moderation has internal permissions logic which does not involve CMS permissions but rather which defines two roles, each which will have differing access to parts of the Moderation UI/UX. These roles are Collection author and Reviewer.

Collection author is defined simply by the author fk link to a user on the ModerationCollection model instance. It is always a single User. For this user, the following bulk actions will be enabled in the Moderation’s change_list view , namely cancel collection, publish and remove.

Reviewer is a more nebulous concept. A ModerationCollection may have a number of Reviewers. The Workflow has one or more Workflow Step each which have a single Role assigned to it. The Role links to either a single User or a Group of Users. This dynamically determines a set of users that are valid Reviewers for a given Moderation Request at a given Workflow Step. Once a valid Reviewer acts on a given Moderation Request, their action is recorded as a Moderation Request Action. A Reviewer has access to a compliment of bulk actions - specifically allowing a Reviewer to accept or reject a draft version.

A User may be both a Reviewer and a Collection author for a given Moderation Collection.

Thus, the Role model defines the person/s who is responsible for reviewing a particular step of the workflow. I.e. it defines the users that may review a draft version for a given Moderation Request for a given Collection.

In summary…

Reviewer

The Reviewer is responsible for approving / rejecting items in the collection and making comments.
They have access to the Approve and Submit for rework Moderation Collection bulk actions.

Collection author

The collection author is responsible for creating, editing and (usually) publishing the collection. They have access to the Submit for review and Publish Moderation Collection bulk actions, as well as the various Moderation Collection buttons.

References

Moderation offers integration with the djangocms-references addon (djangocms-references [https://github.com/fidelityinternational/djangocms-references]). If this is enabled then on the confirmation screen when publishing, all content records that will be affected by the publish action will be listed for review before confirmation.

Workflow

The moderation workflow system is designed to be flexible enough that it can cater for a multi-step approval workflow. E.g. if your organisation has marketing, legal and compliance departments who each need to approve every request, you would add 3 steps to your workflow, each assigned to a different Role. The workflow would require each step to be approved before the Moderation Request could be published.

Workflows are designed to be extensible and customisable for developers.

Workflow Step

Each Workflow has at least one workflowstep. These are steps of review the moderation process needs to go through. For example, if an organisation had several different departments, each needing to approve each Moderation Request, then:

	Each of those departments would be set up as a user Group

	A workflow would be created to represent this

	A step would be added for each department and the Group for that department would be assigned as the Role for that workflow step.

As a result, the draft could not be published without first being approved at each step in the Workflow

Introduction

Introduction:

	Integrating Moderation

Integrating Moderation

Moderation depends on Versioning [https://github.com/divio/djangocms-versioning] to be installed. The content-type models that should be moderated need to be registered. This can be done in cms_config.py file:

blog/cms_config.py
from collections import OrderedDict
from cms.app_base import CMSAppConfig
from djangocms_versioning.datastructures import VersionableItem, default_copy
from .models import PostContent

def get_preview_url(obj):
 # generate url as required
 return obj.get_absolute_url()

def get_blog_additional_changelist_action(obj):
 return "Custom moderation action"

def get_blog_additional_changelist_field(obj):
 return "Custom moderation field"
get_poll_additional_changelist_field.short_description = "Custom Field"

class BlogCMSConfig(CMSAppConfig):
 djangocms_versioning_enabled = True # -- 1
 djangocms_moderation_enabled = True # -- 2
 versioning = [
 VersionableItem(# -- 3
 content_model=PostContent,
 grouper_field_name='post',
 copy_function=default_copy,
 preview_url=get_preview_url,
),
]
 moderated_models = [# -- 4
 PostContent,
]
 moderation_request_changelist_actions = [# -- 5
 get_blog_additional_changelist_action
]
 moderation_request_changelist_fields = [# -- 6
 get_blog_additional_changelist_field
]

	This must be set to True for Versioning to read app’s CMS config.

	This must be set to True for Moderation to read app’s CMS config.

	versioning attribute takes a list of VersionableItem objects. See djangocms_versioning documentation for details.

	moderated_models attribute takes a list of moderatable model objects.

	moderation_request_changelist_actions attribute takes a list of actions that are added to the action field in the Moderation Request Changelist admin view

	moderation_request_changelist_fields attribute takes a list of admin fields that are added to the display list in the Moderation Request Changelist admin view

Internals

Internals:

	Admin Moderation
	monkeypatch.py

	admin.py

	cms_toolbars.py

	Tree Admin
	Add Children To Collection

	References

Admin Moderation

monkeypatch.py

Moderation monkeypatches some of Versioning’s admin pages.
get_state_actions:- this adds a “Submit for moderation” link next to draft versions in the Version table for a given content-type.

It also adds some checks to the checks-framework checks registered in Versioning, to prevent certain Versioning functions at certain stages of moderation.

admin.py

Aside from the usual, there are a number of bulk-action confirmation views that are generated here:- delete_selected, approve, rework, publish, resubmit. These each provide additional information whilst facilitating confirmation and the admin_actions.py redirect to these views.

The available bulk actions are also controlled by the internal permissions system within Moderation which links Users or Groups to Roles. Each Moderation Request Action within a Workflow has a single Role assigned to it. Each Moderation Collection has a Workflow. The result is that not all bulk-actions will be available to every user and some will appear only when the Moderation Request is in a particular inferred state.

cms_toolbars.py

Replaces the VersioningToolbar object with the ModerationToolbar object in order to show Versioning-related buttons at the correct part of the Workflow.

Tree Admin

Add Children To Collection

The CollectionItemsView class from views.py provides a way, when adding a Page to a Moderation Collection of also adding any drafts from other content-types that are included as plugins in any placeholders on that Page.

This poses certain UI / UX challenges. The default implementation meant that these drafts would simply be added to the Collection as part of the list of content objects in that collection. However there are several problems with this:

	There’s no obvious link between the listed items and the pages that contain them and they would thus be indistinguishable from content objects that may have been added without being part of any page.

	Reviewers aren’t necessarily interested in all of that detail. They would want to simply be able to moderate the page, including all of it’s content. So all of the detail may be undigestible for them.

The solution for these problems that has been implemented is to rework the admin as a TreeBeard admin view. This creates a tree for each collection which would map the relationships between items that are added as part of a page and that page.

The outcome of this is that a given content object may be appear repeatedly within the tree, even though it is only added to the Collection once.
e.g. If a child that is added to a Moderation Collection as part of both parent1 and parent2 and individually via that child content-type’s admin, it would then appear three times within the tree. Removing the child from the Moderation Collection would remove it from all/any parts of the tree it was part of.

The tree structure is shown visually using tabbed spacing to indicate nesting.

[image: _images/nested-layout.jpg]
The ModerationRequestTreeAdmin class in admin.py replaces the original ModerationRequestAdmin, providing TreeBeard integration as described above.

The delete_selected_view function of that class ensures that removing an item from the Moderation Collection updates the tree correctly via means of a recursive function, _traverse_moderation_nodes.

References

Moderation offers integration with the djangocms-references addon (djangocms-references [https://github.com/fidelityinternational/djangocms-references]). If this is enabled then on the confirmation screen when publishing, all content records that will be affected by the publish action will be listed for review before confirmation.

Management Commands

The commands made available to developers should be used with caution, be sure that you know what you are doing.

moderation_fix_states

This command is to be used only when a version becomes un-editable due to inconsistencies with states that are controlled by moderation.
It has been observed that the state can end up inconsistent in very rare scenarios. A ModerationRequest object should never have is_active=True when the item has been successfully published.
The following states can cause a version to be locked from editing:

	ModerationRequest.is_active=True

	ModerationRequest.version.state=published

	ModerationRequest.collection.state=Archived

In this scenario a new Draft object cannot be created from the Published object due to version checks.

The command will first analyse and list any ModerationRequest objects that are in a broken / inconsistent state.

The fix will correctly set the is_active flag leaving the correct states:

	ModerationRequest.is_active=False

	ModerationRequest.version.state=published

	ModerationRequest.collection.state=Archived

Usage

To first run an analysis on whether any ModerationRequest objects have a broken / inconsistent state.

python manage.py moderation_fix_states

To execute and resolve any state inconsistencies, you can run the command with the –perform-fix flag set.

python manage.py moderation_fix_states --perform-fix

Signals

The djangocms_moderation.signals module defines a set of signals sent by
Django CMS Moderation.

submitted_for_review

	
djangocms_moderation.submitted_for_review

	

Sent when a Moderation Collection is submitted for review,
or when select Moderation Requests
are resubmitted after being rejected.

Arguments sent with this signal:

	sender
	djangocms_moderation.models.ModerationCollection class

	collection
	A djangocms_moderation.models.ModerationCollection instance
which was submitted for review

	moderation_requests
	A list of djangocms_moderation.models.ModerationRequest instances
which were submitted for review

Note

It’s possible for this list to contain only some of the requests
belonging to the collection being moderated,
because only some of the requests required rework.

This case is only possible for resubmitting after a rework.

	user
	A django.contrib.auth.models.User instance which triggered
the submission

	rework
	A bool value specifying if this was the first time the
collection was submitted, or a rework of its moderation requests

published

	
djangocms_moderation.published

	

Sent when a Moderation Collection is being published

Arguments sent with this signal:

	sender
	djangocms_moderation.models.ModerationCollection class

	collection
	A djangocms_moderation.models.ModerationCollection instance
which was submitted to be published.

	moderator
	A django.contrib.auth.models.User associated with the collection which is the moderator of the collection.

	moderation_requests
	A list of djangocms_moderation.models.ModerationRequest instances
which were published.

Note

It’s possible for this list to contain only some of the requests
belonging to the collection being moderated,
because only some of the requests were published.

	workflow
	An instance of djangocms_moderation.models.Workflow which was used for this collection.

unpublished

	
djangocms_moderation.unpublished

	

Sent when a Moderation Collection is being unpublished

Arguments sent with this signal:

	sender
	djangocms_moderation.models.ModerationCollection class

	collection
	A djangocms_moderation.models.ModerationCollection instance
which was submitted to be unpublished.

	moderator
	A django.contrib.auth.models.User associated with the collection which is the moderator of the collection.

	moderation_requests
	A list of djangocms_moderation.models.ModerationRequest instances
which were unpublished.

Note

It’s possible for this list to contain only some of the requests
belonging to the collection being moderated,
because only some of the requests were unpublished.

	workflow
	An instance of djangocms_moderation.models.Workflow which was used for this collection.

How to use the moderation publish signal for a collection

The CMS used to provide page publish and unpublish signals which have since been removed in DjangoCMS 4.0. You can instead use the signals provided above to replace these.

Djangocms-moderation provides a way to take further actions once a collection has been published. The published event is the last event executed for a moderation.

from django.dispatch import receiver

from cms.models import PageContent

from djangocm_moderation.signals import published

@receiver(published)
def do_something_on_publish_event(*args, **kwargs):
 # all keyword arguments can be found in kwargs
 # pass

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 djangocms_moderation	

 	
 	
 djangocms_moderation.signals	
 Signals sent by the moderation.

Index

 D
 | M
 | P
 | R
 | S
 | U
 | W

D

 	
 	
 djangocms_moderation.signals

 	module

M

 	
 	Moderation

 	Moderation Collection

 	Moderation Request

 	
 	Moderation Request Action

 	
 module

 	djangocms_moderation.signals

P

 	
 	published (djangocms_moderation attribute)

R

 	
 	Role

S

 	
 	submitted_for_review (djangocms_moderation attribute)

U

 	
 	unpublished (djangocms_moderation attribute)

W

 	
 	Workflow

 	
 	WorkflowStep

 nav.xhtml

 Table of Contents

 		
 Welcome to djangocms-moderation’s documentation!

 		
 Overview

 		
 Moderation Collection

 		
 Buttons

 		
 Add Collection

 		
 Edit Collection

 		
 Add draft to Collection (“Submit for moderation”)

 		
 Actions

 		
 Submit for review

 		
 Cancel collection

 		
 Archive collection

 		
 States

 		
 Collecting

 		
 In Review

 		
 Archived

 		
 Cancelled

 		
 Bulk Actions

 		
 Remove from collection

 		
 Approve

 		
 Submit for rework (reject)

 		
 Submit for review

 		
 Comment

 		
 Moderation Review Lock

 		
 Moderation Request

 		
 States

 		
 Ready for review

 		
 Ready for rework

 		
 Approved

 		
 Published

 		
 Moderation Request Action

 		
 Notifications

 		
 Email notifications

 		
 Role

 		
 Reviewer

 		
 Collection author

 		
 References

 		
 Workflow

 		
 Workflow Step

 		
 Introduction

 		
 Integrating Moderation

 		
 Internals

 		
 Admin Moderation

 		
 monkeypatch.py

 		
 admin.py

 		
 cms_toolbars.py

 		
 Tree Admin

 		
 Add Children To Collection

 		
 References

 		
 Management Commands

 		
 moderation_fix_states

 		
 Usage

 		
 Signals

 		
 submitted_for_review

 		
 djangocms_moderation.submitted_for_review

 		
 published

 		
 djangocms_moderation.published

 		
 unpublished

 		
 djangocms_moderation.unpublished

 		
 How to use the moderation publish signal for a collection

_static/file.png

_images/nested-layout.jpg
django [

Django administration

Home > django CMS Moderation > Moderation collections > Requests

Collection 1

Job ID: 31

Status: Collecting
Workflow: NCO
Author: Thomas Silva

......... L 4 Go
O ID ~ CONTENT TYPE
v 41 page content
] 42 filer content
43 alias content
V 44 page content
45 shippet content
» 46 page content

0 of 2 selected

TITLE

Page 1 by test (en)

Page 2 by test2 (en)

VERSION AUTHOR

test

test

test

test2

test

test

PREVIEW

@ & ¢ 6| 6 ¢

Cancel this collection

STATUS

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Open example.com »

Submit collection for review

COMMENTS

View

View

View

View

View

View

_static/plus.png

_static/minus.png

_static/nested-layout.jpg
django [

Django administration

Home > django CMS Moderation > Moderation collections > Requests

Collection 1

Job ID: 31

Status: Collecting
Workflow: NCO
Author: Thomas Silva

......... L 4 Go
O ID ~ CONTENT TYPE
v 41 page content
] 42 filer content
43 alias content
V 44 page content
45 shippet content
» 46 page content

0 of 2 selected

TITLE

Page 1 by test (en)

Page 2 by test2 (en)

VERSION AUTHOR

test

test

test

test2

test

test

PREVIEW

@ & ¢ 6| 6 ¢

Cancel this collection

STATUS

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Ready for submission

Open example.com »

Submit collection for review

COMMENTS

View

View

View

View

View

View

